Learning Outcomes

- Explain and apply the exponent laws:
- Power with a Product Base
- Power with a Fractional Base
- Zero Exponents
- Negative Exponents

When any base is multiplied by an exponent, distribute the exponent to every part of the base.

General Case:

Where x and y are in the base and m is power

$$
(x y)^{m}=x^{m} y^{m}
$$

Example 1: (2 $\times(-3)^{3}$
Write the following as repeated multiplication, then using the product rule.
Write in standard form (evaluate)
a. Repeated multiplication:
b. Product rule

Try it Yourself

Power with a

 Fraction Base RuleSolve the following using repeated multiplication and using the power of a product rule.
a. $(2 \times 6)^{5}$
b. $(x y)^{3}$
c. $(8 x)^{4}$

When the base of an exponent is a fraction, distribute the power to both the numerator and denominator.

General case:

Where x and y are part of the base and a is the power.

$$
\left(\frac{x}{y}\right)^{\mathrm{a}}=\frac{x^{a}}{y^{a}}
$$

Write the following as repeated multiplication, then use the quotient rule to write in standard form
$\left(\frac{3}{4}\right)^{3}$

Zero Exponents

Anything to the power of zero is \qquad .

1. $3^{0}=$
2. $(-5)^{0}=$
3. $(-5+2-4 \times 6)^{0}$
4. -5^{0}

Substitution

We can substitute numbers like we did before
Example: The area of a circle is $\mathbf{A}=\boldsymbol{\pi} \boldsymbol{r}^{\mathbf{2}}$. What is the area of a Circle if $\mathbf{r}=\mathbf{6}$? What if $\mathbf{r = 1 0}$? Leave as an exact answer.
$A=\pi r^{2}$

Negative Exponents

Complete the table below:

Power	Standard Form		The Rule	Rewritten
2^{4}			$\div 2$	
2^{3}		$\div 2$		
2^{2}		$\div 2$		
2^{1}			$\div 2$	
2^{0}			$\div 2$	
2^{-1}			$\div 2$	
2^{-2}			$\div 2$	
2^{-3}			$\div 2$	
2^{-4}				

Raising a number to a negative exponent is equal to taking the reciprocal of the base raised to the associate negative exponent.

General Case:

$$
X^{-a}=\frac{1}{x^{a}}
$$

Examples:

a. 5^{-3}
b. $\left(\frac{2}{5}\right)^{-2}$
c. $\left(\frac{a}{b}\right)^{-1}$

Homework: p 3 \#15-38

