Learning Outcomes

Product Rule

Numbers in standard form means to evaluate to a single number

- Explain and apply the exponent laws:
- Product Rule
- Quotient Rule
- Power Rule

When multiplying powers with the \qquad base, \qquad the exponents.

General Case:

Where x is the base and a and b are powers

$$
a^{x} x a^{y}=a^{(x+y)}
$$

Example 1:

Write the following as repeated multiplication, then using the product rule. Write in standard form (evaluate)
$(-2)^{4} \times(-2)^{2}$
a. Repeated multiplication:
b. Product rule

Solve the following using repeated multiplication and using the product rule.
a. $(4)^{2} \times(4)^{5}$
b. $(-3)^{3} \times(-3)^{3}$
c. $\left(\frac{1}{2}\right)^{4} \times\left(\frac{1}{2}\right)^{2}$
d. $-2^{5} \times 2^{3}$

Quotient Rule

When dividing powers with the \qquad base, \qquad the exponents

General case:

Where x is the base and a and b are powers.

$$
x^{a} \div x^{b}=x^{(a-b)}
$$

Write the following as repeated multiplication, then use the quotient rule to write in standard form
$(-2)^{5} \div(-2)^{2}$

Evaluate using the quotient rule
$\frac{x^{7}}{x^{z}}$

Try it Yourself
Evaluate the following using the quotient rule
a. $4^{7} \div 4^{2}$
b. $(-5.1)^{6} \div(-5.1)^{3}$

Any number to the power of 1 equals itself
$x^{1}=x$
C. $\frac{y^{9}}{y}$

When a \qquad is raised to an exponent, \qquad the exponents.

General Case:

Where x is the base and a and be are exponents

$$
\left(x^{a}\right)^{b}=x^{a b}
$$

Write the following as repeated multiplication and evaluate.

1. $\left(2^{3}\right)^{2}$
a. Repeated multiplication:
b. Power rule
2. $\left((-6)^{4}\right)^{2}$
a. Repeated multiplication:
b. Power rule

Try it Yourself

Use the power rule for the following to write as a single power:

1. $\left(3^{2}\right)^{5}$
2. $\left((-10)^{3}\right)^{5}$
3. $\left(y^{m}\right)^{n}$
4. $\left(4.2^{5}\right)^{3}$

Expand Your Knowledge

Apply the product rule, quotient rule or power rule to solve for the missing exponent.

1. $7^{2} \times 7^{x}=7^{18}$
2. $5^{x} \div 5^{2}=5^{5}$
3. $\left(2^{4}\right)^{x}=2^{20}$
